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We present a new family of algorithms for incompressible 3D
Navier-Stokes equations in cylindrical geometry. A model problem
of turbulent flow calculation in an infinite circular pipe {(r, ¢, 2}
0=r=R, 0= ¢< 2|7 < o} is considered and used for accuracy,
stability, and efficiency estimations. Algorithms are based on
Galerkin trigonometric approximation for uniform variables ¢, z,
on pseudospectral polynomial approximation in the r-direction
{with different sets of collocation nodes) and on implicit and
predictor-corrector time advancement schemes. In all cases high
(infinite order} spatial accuracy is retained despite the presence
of coordinate singularity at r = 0. To achieve this we exploit the
behaviour of analytic functions of variables r, ¢, z in the vicinity
of r = 0. We analyze the advantages and disadvantages of four
MNavier--Stokes algoarithms. in method A a new splitting technique
is developed which makes use of a second-order predictor-
corrector scheme and nontraditional fractional step procedure.
Stahility and efficiency characteristics of this scheme exceed that
of the usually used mixed Adams-Bashforth/Crank-Nicolson time
advancement, To minimize errors due to splitting, algorithm B is
suggested that has no fractional steps. In this method pressure
values are eliminated from discretized Navier-Stokes equations
by means of eguivalent matrix operations. Although conventional
Chebyshev collocation nodes v, = R cos{nf/2Q), I =0, 1, ..., Q,
are used in both methods, the discrete boundary conditions at
r = 0—cansistent with analytic behaviour of solutions for small r—
are Tully accessible for the first time. In addition, approximations
developed prevent the appearance of various pathological {with,
o.g., spurious, parasitic modes, etc) discretizations of Navier-
Stokes operators. In algorithm C we propose a new set of colloca-
tion nodes r, = (1 — xJR/2, 1 = 0,1, ..., Q, where x; € (-1, 1},
I=1,2, .., Q- 1, are the zeros of Jacobi polynomial P21{x),
xp = —1, Xg = 1. It is demonstrated that psevdospectral polynomial
approximation with this set of nodes possesses the discrete
analogue to the energy conservation law of the original Navier—
Stokes initial boundary value problem. The latter is of special
significance for the algorithm’s nonlinear stability. In method B
new dependent variables are introduced that completely consider
the form of the analytic pressure and velocity components at
small r. We show that the discrete Navier-Stokes equations admit
in this case an efficient solution procedure, Finally, we present
a technigue that can be used for exhaustive a priori estimates
of the algorithm’s accuracy and stability characteristics in the
linear approach. & 1995 Academic Press, inc.
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I. INTRODUCTION

For the past decade considerable progress has been achieved
in the accurate description of transitional and turbulent wall-
bounded shear flows in the simplest geometries by means
of nonstationary three-dimensional Navier-Stokes solutions.
See, e.g., the calculations of Orszag and Kells [1], Rozhdest-
vensky and Simakin [2], Kleiser and Schumann [3], Kim,
Moin, and Moser [4] in a plane channel, and the results of
Spalart {5}, Laurien and Kleiser (61 for flat-plate boundary
layer flows. Spectral and pseudospectral algorithms being
used for solving these problems essentially exploit the periodic
boundary conditions in two uniform directions as well as a
relatively simple form of Navier—Stokes equations in Cartesian
geometry. At the same time numerous attempts were under-
taken to extend the class of flows under invesligation. As
a result, new algorithms begin to appear, being efficient
enough to integrate Navier—Stokes equations under more
complicated conditions:

(a) At the presence of solid boundaries leading to nonperi-
odic boundary conditions in two spatial directions (Le Quere
and Alziary de Roquefort [7]. Tuckerman [81);

(b  When representing nontrivial geometries (imore com-
plex than parallelepipeds, cylinders, ele.). See Orszag 9], Pa-
tera | H0), Macaracg and Streett [ 1], Funaro, Quarteroni, and
Zanolli [12];

(¢} When using coordinate systems more complex than
Cartesian ones—cylindrical, spherical. etc. If the integration
domain contains coordinate singularities essential difficulties
arise in the course of spatial discretization of the Navier—
Stokes equations.

Let us consider several aspects of Navier—Stokes discretiza-
tion in cylindrical geometry (including the axis r = 0, taking
as an example the problem of the description of incompressible
viscous fluid flows in an infinite circular pipe s = {r = (r, p,
0= r=R 0= ¢<2n |zl < o} at supercritical Reynolds
numbers, Although all the considerations are made below for
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this specific case, the results obtained have wider applicability.
In addition, investigation of turbulence in a pipe represents
self-dependent interest, since it relates to one of the most famous
classical problems of hydrodynamics originating from Osborne
Reynolds experiments [13].

Transitional flows in a circular pipe (under the condition of
velocity periodicity in the streamwise direction) were simulated
in an axisymmetric case by Patera and Orszag [14] and by
Orszag and Patera [15] and Boberg and Brosa [16] in the
nonaxisymmetric one. Although no secondary statistically sta-
tionary states (describing fully developed turbulence in long
pipes) were calculated in these works, results of considerable
interest concerning possible mechanisms of transition to turbu-
lence were obtained. In each of these works the discretization
of Navier—Stokes equations with respect to uniform variables
@, z is carried out by means of Galerkin trigonometric approxi-
mation. As to the r-variable the pseudospectral approximation
is used in [14, 15] with the representation of Fourier coefficients
of velocity in the form of Chebyshev series. Boberg and Brosa
F16] exploit Galerkin approximation for the variable r with
divergence-free solutions of the Stokes equations as basis func-
tions in the representation of velocity—an approach previously
checked by Salwen and Grosch [17] on the linear stability
problem.

Direct Navier—Stokes simulation of turbulent flows in a pipe
was carried out by Nikitin {18], Priymak, and Rozhdestvensky
£19], Priymak [20, 217, Calculations [18, 19] are based on low-
resolution approximations of Navier—Stokes equations {only
four harmonics in the uniform variables ¢, z are incorporated
into the Fourier series representation of the velocity field in [18],
and 25 harmonics in [19]). As to [20, 21] accurate simulation of
turbulent flows in a circular pipe was carried out at supercritical
Reynolds number Re = U,2R/v = 4000 (based on the mean
velocity U/,,) with the spatial resolution high enough to resolve
the essential scales of motion. The numerical method being
used by Nikitin [18] is similar to schemes developed in [16,
17]. In [19-21] one of the algorithms discussed below (see
Section 4) was applied.

In addition, the algorithm suitable for Navier—Stokes simula-
tion of turbulence in a pipe was proposed and tested on the
linear stability problem for Poiseuille flow by Leonard and
Wray [22]. In this work Galerkin approximation is used for all
the spatial variables and a new system of divergence-free basis
functions is constructed, taking advantage of the approximation
properties of certain Jacobi polynomials. A new set of basis
functions is an alternative to Stokes functions utilized in [16—
18]. Potential interest for Navier—Stokes integration in & also
represents the original spectral algorithm suggested by Tuck-
erman [8] and initially intended for simulation of Rayleigh—
Benard convection in a cylindrical container.

In this paper we propose a family of pseudospectral algo-
rithims for direct Navier—Stokes simulation of turbulent flows
in a circular pipe #. In Section 2 mathematical formulation of
the problem is presented. Comparative analysis of four numeri-
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cal algorithms is conducted in Sections 3-8. Their common
feature is the Galerkin trigonometric approximation for van-
ables ¢, z but they differ from each other by methods of spatial
discretization in the radial direction and by time integration
schemes. The algorithm that was constructed first (see Section
4) 1s based on pseudospectral poiynomial approximation with
Chebyshev collocation nodes r, = R cos(w1/20Q), /=0, 1, ...,
¢}, and on an implicit second-order time-advancement scheme
consisting of two fractional steps. On the first step the contribu-
tions of the pressure gradient and of the Navier—Stokes equa-
tions nonlinear terms, as well as viscous terms containing only
derivatives with respect to uniform variables ¢, z, are consid-
ered. Viscous terms containing derivatives with respect Lo r are
taken into account on the second fractional step. The discrete
nontinear equations obtained are solved by the method of suc-
cessive approximation.

Later on we succeeded in constructing three new algorithms
without fractional steps where time integration is carried out
by means of the Crank—Nicolson scheme for linear terms
and an implicit second-order scheme for nonlinear terms.
Spatial discretization of Navier—Stokes equations implies that
the incompressibility condition is satisfied identically in the
computational domain. Then, pressure values in the colloca-
tion points are eliminated from the resulting discrete equations.
The algorithms constructed differ in the methods of spatial
discretization in a radial direction. In one of them pseudospec-
tral polynomial approximation with collocation points n, (see
above) is also used (Section 5). In the second algorithm of
this type (Section 6) the preliminary mapping of segment
[0, R] onto the segment [—1, 1] is conducted. Spatial
discretization of Navier—Stokes equations is carried out by
means of polynomial approximation with collocation nodes
that are the roots of Jacobi polynomials PE(y), y € [—1,
1]. The points v = *1 are also included in the set of
collocation nodes. It is shown that the pseudospectral approxi-
mation used has the discrete analogue to the energy conserva-
tion law of the original boundary value problem for Navier—
Stokes equations. In the third algorithm (Section 7) spatial
discretization is preceded by the change of dependent vari-
ables. Written in terms of new variables properly considering
the form of the pressure and velocity components at small
r, the Navier-Stokes equations no longer possess singularity
at r = 0. Special care is taken to obtain such discrete
equations for that velocity components that they can be
solved by the efficient influence matrix method.

The stability and accuracy of the algorithms are analyzed
analytically and numerically in Section 8. Preliminary esti-
mates can be done on the basis of comparison of the spectral
characteristics of discrete equations with corresponding char-
acteristics of linearized Navier—Stokes equations. Such analy-
sis is reduced to the linear eigenvalue problem for the
conversion matrix from time step f; to time step ;.. Final
conclusions are made according to the results of nonlinear
Navier—Stokes integration.
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2. GOVERNING EQUATIONS

In the present paper we develop algorithms for numerical
integration of Navier—Stokes equations

%=—VP+VXQ+VV2V,

V-V=0, (1)
Ve =0, V]|o,=Vyr), V:-V,=0,

describing turbulent flows of viscous incompressible fluid in a
circular pipe 4. Here V(r, 1) is the velocity;, P = p/p + V%2
is the total pressure, p(r, t) being the pressure, L = V X V
is the vorticity; v and p are kinematic viscosity and density of
the fluid. We seek bounded nonstationary 3D solutions of (1)
that satisfy the relations

Vir,n=Virez+ 71, (2)
P=Pnz+P, Pr,)=Pr,oz+2Z1, 3
U, () =(V-e,),, = const, [N

where
(3o = (LR f: rdr f; de(-), e.= (0,0, 1).

At arbitrary Reynolds numbers Eqs. (1)-(4) have station-
ary solutions

2 ]
V0=(0,0,V0), VO=—£_d£(l _rlIRZ)’
dvp dz
5
d—’f = const ©)
dz ’

describing laminar Poiseuille flows. It is well known [23] that
at supercritical Re > (2 — 3) X 10° nonstationary (furbulent)
flow regimes may also exist. Numerical algorithms under study
are constructed for the description of these turbulent regimes
by means of nonstationary solutions of the Navier—Stokes equa-
t1oms.

3. BASIC PROPERTIES OF SPATIAL DISCRETIZATION

For presentation and analysis of numerical algorithms it is
convenient to introduce new dependent variables,

v=(u,wu) =V — VY,
P=plp+¥i2 p=p-p’

that are the disturbances of stationary solutions (5). Navier—
Stokes equations can be rewritten then as
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a—v:ﬂ”uezf Va_iv+v><cu+ vViv — VP,
dat az

V-v=0, (6)
w=VXxXv, Q=VxXV'=(010°0),

with the initial and boundary conditions modified correspond-

ingly.
In all the algorithms constructed we seek Navier—Stokes
solutions in the form

"

v:r!:n =VYm-n P;:n = P*m,*n' &y = 27T/Z, =% -1,

( ) + E ( )exp(imaoz =+ ing),
PO(”Z m== n==~K Pmn(rs t) (7)

where the asterisk denotes complex conjugate values.

In the r-direction expansions based on orthogonal polynomi-
als that are the eigenfunctions of singular Sturm-Lijouville
problems are utilized. In addition, these polynomial approxima-
tions have to take into account the following behaviour of the
sought for solutions as r — O

Wi W) = P (O g, W) (0 % 0),

(Omos Wag) = H{Bng, W),
Bon = 1" s 8 = U — iWny (0¥ 0), (8)
Fon = " fons fon = Ve + iy (0 #0),

(s Pr) = r'Wihs, Pr),

where the ~ symbol denotes the values which may be repre-
sented as a series in terms of even powers of r.

Although these relations are known from the literature [24],
they are often attributed to the local properties of Laplacian
(see, e.g., [15, 25]). We want to emphasize here that formulae
(8) follow solely from the analyticity of the vector v,, and
scalar P, functions of the cylindrical variables r, ¢, 7 in the
vicinity of the axis r = 0. It does not matter whether these
functions satisfy the Navier—Stokes (Laplace) equations or not.
To prove this statement one can make use of Taylor expansions
in the vicinity of » = 0, changing over then to the cylindri-
cal coordinates.

Discretization of Eqs. (6) is carried out by means of the
Galerkin approximation with respect to the variables ¢, z and
by the pseudospectral method with the collocation nodes being
extremums or zeros of a certain Jacobi polynomial in the ra-
dial direction.

4. THE FRACTIONAL STEP METHOD (ALGORITHM A)

Algorithm A represents an implicit time advancement
scheme consisting of two fractional steps. At the first step
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V= v+ ATL(VT?) — A VP

D) a.]rsj‘i' = Ov

(9a)

It

v-v {9b)

where

2
Liv) = ﬂ@ue—Vﬂ~v+vxw+y(V1———a —1—a~)v,
dz ' ror

1
V'} = V(l', IJ), V"H'l"2 = ;;(VJH + VJ), Af = tivy — Ly,

the preliminary velocity V¥ is obtained. We consider here contri-
butions of the pressure head, nonlinear terms and viscous terms
containing derivatives only with respect to uniform variables

L,z
From the equations

14
vitl=y+ Atpl-—+- )V”',
<82 ror

10
VH-I‘r:R:__O ( )

of the second step we find the final velocity v/*'.

The nonlinear equations (9), (10) can be solved by means
of the successive approximations method. Instead of (9) we
have then

Pp ALy A VB (@)
V’\;:O, E|F=R=0,

=1}
v =

%(“%”M +v7) 9'b)
and Egs. (10) can be rewritten as
2
g1 (2 412)
art  rér
(107

(P -
vt e=0

where s 18 the iteration counter.

For arbitrary s = | the iterative algorithm (9'), (10') defines
the scheme of O(Ar? + v Ar) approximation order. The initial
approximation V71 can be calculated using the three-layer ex-
plicit scheme {9"), (10"), where Eqgs. (9") are defined as

V= v! + AtGLV) — WV — ArVPe,
V.-

(9"

O, i'j‘r;R =q0.

It should also be noted, that if we consider the equations
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2
v L +
( (61’2
instead of Eqgs. (10'y we will get the time integration scheme
(9", (10"y of O(Ar*) approximation order. 5
To solve egs. (9°), (10") we have to eliminate P! from (9").

Applying operator rot rot to {9'a) we can receive then the set
of boundary value problems

d? 14d 1 -
(dr2 & dr (7 r? b)) U

Umn|r=R = 0, mZ + n2 :’E 0:

1a 2N @ o
- = ——(v+ 10
rar) Ar)v At (v v, (09

(11a)

dr r
d 20\ Y,
— imoy (a; + y—]j) A
= (mag) + 6}, a=1+20%0%), b=1-20"10),
(11b)
where
:(‘j) (s—1)

vl =i+ At L v YD), (12)

Discretization of Egs. (11) with respect to r is carried out
by the collocation technique with the interpolation points r; =
R cos(ml/2), [ = 0, 1, ..., Q. The Fourier coefficients v,, of
the velocity are approximated by the polynomials

-k
Vil 1y D) = 2 Vg (OAP(), Vi = Vileory (132)
0k
hiAr) = (2p/ Q) EO (p, + k(1 — p,)) cos(m(2g
=
+ K)j120)T oy 1i(r/R),
pe=pe=1/2, p,=1 (g=12,..,0-1), (13b)
0 foru.{n — even), U, Wa,(r2 — odd),
- { (13¢)
1 foru,.(n — odd), v, Ww.{n — even).

Here T,,.; are Chebyshev polynomials of the first kind. Thus,
the form of the interpolation polynomials (13) partly reflects
the properties {8) of the sought for solution.

Consider the square matrices

! 1d d
(i) (50

!’*l‘i

Li=0,1,.,0 -k
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Then the pseudospectral approximation of Eqs. (11) can be
written in the form

(Cmﬂmn)l + a(ri)(B(k)ﬁmn)i - ('}’(r) + %b(r)) tjmnt = C(r.')!
1=1,2,00., 0.=0(n=1),
0.=Q~ 1(n # D,

(15a)

=0 (|n| # 1,7 — odd), (15b)

Unny = 0: an

where the last equation follows from (8),
ﬁmﬂ = (E'}mnOs 5m1 3 nes am.u,Q—k)T,

and (), is the /th component of the corresponding vector. Com-
putation of the Fourier coefficients (v X ), of nonlinearity
is carried out by means of algorithm [26]. To avoid aliasing
errors the § — rule is used.

Having obtained  one can calculate & and w from

(:)
vt =1t

u;m! = “mnf
(5) 1: 15 2! sevy Q (f’l = 0)
lmﬂig A[Pmﬂ;, (163.)
I=1,2,.,0—1(n+0),
)
W = W4 — t—AtP,{;}, (=1,2,..,0-1,
4
Oyng + iV =0 (Jn| = 1), (16b)
| 1.
AtP{,;'= alr=r, T = Un|r=r
Q) (dr Bl
(51 in (5)
+ imo b+ — . ~:’£f) (I6¢)
l‘ .

The final values of velocity v**' satisfy

(-

o] ) o
Vi =0, ulib=0n+0), vii=

+ 1;) - 31;) Vil = = L (2502 £0)
(17a)

Wb = 0(al # 1),
(17b)

where derivatives are approximated with the hel]_;) of matrices
C(") and B%, In the equations for u){,,f{,‘ (ifr)“l,, pitl =1,
. O otherwise [ = 1,2, ..., @ — 1.
In the case m = n = 0 the algorithm has no fractional steps.
The streamwise velocity component, for example, may be found
from the equations

V. G. PRIYMAK

0] 1d Vo 1
ot ( (dr * rdr) AI) W Wl = Eu{m

s=1) (=1
J+172 ST
_( ¥ X w )()Oleu

i=1,2,..,0: (18a)

Sui— o, j:‘dg;;l rdr =0 (18b)

where the second equation in (18b) is the condition of fow
flux constancy. Equations for the azimuth velocity component
can be written in a similar way. As to the radial velocity, we have

D=0, 1=0,1,..

sQ’

that follows from the incompressibility condition.

We note that the use of the implicit scheme is not a traditional
practice. As a rule, mixed explicit/implicit time advancement
is employed with the explicit treatment of nonlinear terms. Our
motivation for considering an implicit temporal discretization
is based on the well-known fact (see, e.g., [26, 27]) that stability
restrictions are improved if the algorithm possesses discrete
analogues to the neutrality properties of the nonlinear and pres-
sure terms (see relations (28) in this paper). An implicit scheme
(9), (10), (as well as (9", (10") if iterations are conducted to
convergence) satisfies one of these neutrality conditions. Due
to the identity

VIR (yE ) = () @ft2 = T X v,

it follows from (9}, (10) that the nonlinearity v X « makes no
contribiition to the variation

1 (vf+l)2 _ (vl)’l

v, (VHI - vj) _ 1
At

Ar

(=]

of the squared velocity over one time step. Certainly, this is
correct to within the errors introduced by splitting the Navier—
Stokes operators. Nevertheless, for the explicit/implicit
schemes of the (97). {10 type the parasitic contribution of the
nonlinear term v X @ to the production of the flow kinetic
energy is considerably greater.

An important result was obtained in the course of our Navier—
Stokes simulation (20, 21] of the turbulent pipe flow: computa-
tions demonstrated that even the small number of iterations in
(9'), (10') abruptly improves the stability characteristics of the
explicit/implicit algorithm (9"), (10). In most cases we could
use the simple predictor—corrector scheme: Egs. (9") and (10")
with s = 0 being the predictor; Eqs. (9"} and (10") with the
maximal s = 1 being the corrector. At Reynolds number
Re = 4000, for example, stable and accurate predictor—correc-
tor computations could be carried ot with a time step four
times greater than those in the conventional explicit/implicit
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method. Thus the summary efficiency of the predictor—correcior
scheme proved to be two times higher.

It should be also emphasized that there are not any spurious
OF parasitic modes in algorithm A. This statement is the result
of algorithm’s careful testing against the linear theory. Some
results of this testing are presented in Section 8 (Table IV).

Another of our innovations is the decomposition of viscous
terms into two parts. Derivatives with respect to the uniform
variables ¢, z are considered only at the first fractional step.
That is why the collocation Q X @ matrix approximating Eg.
(17a) of the second fractional step is the same for all wavenum-
bers m, n. We invert it once and then use the ready result at
each time step. Storage requirements are negligible in this case.

Unfortunately this is not true for collocation matrices repre-
senting Egs. (15); these full matrices do depend on both m and
n wavenumbers. The latter requires the considerable memory
of about M X N X ¢} words. Nevertheless, scheme A is
practically suitable for moderate Reynolds numbers and was
used for the turbulent pipe flow simulation at Re = 4000.
Computations carried out with up to (@ + 1) X 2N + 1) X
(2M + 1) = 33 X 85 X 85 degrees of freedom in the r—, ¢o—
and z-directions demanded =M X N X Q* = 1,806,336 words
to store the inverse collocation matrices. These memory require-
menis are admissible for the ES-1066 computer used. For the
moderate (but supercritical} Reynolds number considered, the
aforementioned resolution proved to be sufficient for accurate
Navier—Stokes simulation of turbulence; the deminution of en-
ergies of Fourier harmonics for azimuthal and streamwise wave-
numbers 7 and m is roughly by factors of 1072 and 107, respec-
tively (with the computational period Z = 27R}; the minimum
and maximum spacings between mesh points in the r-direction
were respectively 0.18 and 7.32 wall units.

Certainly, for higher Reynolds numbers and/or larger stream-
wise period Z we need more efficient algorithms. In Sections
5, 6, and 7 we present several such methods with the storage
requirements for collocation matrices of about 2 X & X @* words.
Their common difference from method A is the absence of frac-
tional steps that allows us to get rid of splitting errors. In the
methods presented not only no-slip boundary conditions, but also
the continuity equation, are satisfied on the ¢7,,, time level. Non-
fulfillment of the incompressibility condition is one of the draw-
backs of algorithm A; calculations show that it leads to the impos-
sibility of accurate description of the near-wall behaviour of
Reynolds stresses, e.g., of the (y*)* behaviour of the normal
stress, y* being the distance from pipe wall in wall units.

There are also several other splitting errors in method A. For
example, the fine point of the algorithm is the calculation of right-
hand side of Eq. (15ayatr = 0 ({= Q) when 1| = 1. Noproblems

ariseifthe values D %} p s and ! -5, 11| = 1, exactly satisfy equations
similar to (16b). However, some errors are introduced by the

5= 1) . .
term L( v *"%) in (9') and at the second fractional step. These
errors are smoothed out in the course of computation.
One of our computer codes was designed for the multiproces-
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sor vector computer 1IZOT ES1037-ES2706 (the hardware is
manufactured in Bulgaria by IZOT and the software is devel-
oped in the Space Research Institute, Russian Academy of
Science, Moscow), consisting of the central processor and 4—
8 attached 38-bit array processors with a processing rate of 12
MFEFLOPS each. Different strategies of algorithim vectorization
and parallel processing are considered by Priymak, Schev-
chenko, and Yulaev [28], providing the best possible utilization
of the computer architecture.

So we turn to algorithms without splitting of Navier—Stokes
operators. The approaches presented below differ in the meth-
ods of pressure elimination, in the conservation properties,
in the iteration techniques, and in the discrete Navier—Stokes
equation solvers.

5. CHEBYSHEY COLLOCATION ALGORITHM WITHOUT
SPLITTING (ALGORITHM B}

We begin with the discretization of Navier—Stokes equations
(6) with respect to the uniform variables ¢, z. Afterwards we
conduct the change of dependent variables: variables f,., £,
n # 0, are introduced according to (8). Finally, dropping for
convenience the subscripts m, n and setting & = mey,, we obtain
for the certain Fourier mode,

%q :Qoé(f+ ge, —iaViq+ F(q) + VAq - VP,

- & (19a)
V.q=0, q|=x=0, fﬂ toprdr = 0,

where for n # 0,

q(r, ) = (g, 4, ¢y = (f. g, u)

TP = (D — n/r)P,(D + nl/r)P, iaP), D= alar,
Aq= (D2 + %D - az) q —#((n + 1Y (n = 1Yg, nu),

Voq= 05D+ (n+ 1)/2r)f+ (0.5D —
F(q) = (FO, F&, FO),

(n — 1)/2r)g + iow,
Fl?=F-e *F-e,F9=F-e,

(19b)
F being the Fourier harmonic of nonlinearity v X o,
For n = 0 we have, respectively,
q(r, 1) = (U, w, u),
= (DP, 0, iaP + Py(t)5,0),
= (D2+%Dfa2)q—;15(v,w, 0), (19¢)

Voq=(D+ 1/ro + iou.

= (v X @),
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&0 being the Kronecker delta. The last equation in (19a) corre-
sponds to the flow flux constancy restriction and is utilized
only in the case m = n = 0.

Temporal discretization of Eqs. (19} is carried out by means
of the implicit secoend-order scheme

At VpIH

M= g 4 At M( J’+h‘2) + Ar Vﬂ Jru _
q q q q 20)

ﬁ; . q..'H =0, qf+l|,=R =0

where
N@ = Q'}(f + e, — iaVig + F(@), g7 = Ke't + g,

and the superscript index J refers to the time level, 1, = J Ar.
Equations (20) can be solved with the help of some successive
approximations method. We make use of the algorithm

5 5 ~ (9
(q".f-{-l = qJ + AIN((q}.HUZ) + AI VAq.Hlt‘Z Af VPJJrl’
6 (lsl)fﬂ O (él) =R 0’ (21)

where s is the iteration counter.

For the spatial discretization of Egs. (21) we use the pseudo-
spectral method with collocation nodes r; = R cos(ij/20),
j=0,1 .., @, approximating the sought-for solution q, P by
the interpolation polynomial of (13a), (13b) type with a new
selection rule for parameter k:

0 forf, g (n— odd), u, P(n — even),
k= { (22)

1 forf, g (n—even),u, P(n — odd).
With regard for relations (8), the fully discretized Navier—

Stokes equations take then the form (we consider below only
the case n # 0):

(s) (5)
(LFH = (DY = BROPHY, = Ly, 1= 1,200, (230)
(G — (D® + nREYPINY =G, [=1,2,...00, (23b)
0 (s)
(Uary, — ia PI* =AU, 1=1,2,..,0— 1, (23c)

(5) s
(D® + (1 + DRO)JIT + (D% — (n — DR,
+ 2aa( = 0,

(23d)

(23e)
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()
' =00 —odd,n+ -1),

g4t =0(n— odd, n # 1). (23f)
Here
=0 QP=0-1 (#*-,
V=0 OP=0-1 @+
= hh s fo-dt
with the similar notation for vectors g, u, and P;
d 1
D = bl R =—hl,
[=0,1,...0+k-1, j=0,1,..,0—k
v 1
Ly=3 (CP + B — —(n + 1?8 — o §y) — % O
= WO j=0,1,.,0 -k
GI:B(C B(k)fl n— 1)25{ I 6[) 5[',
i 2 d I AI ¢
I=1,2,.,0% j=0,1,..,0—k
U, = B(C“‘) + By — —nl 8 — e’ &) — L&'
i a d AV
[=1,2,..,0-1, j=0,1,...0—-k

5 -1
(&, 6, )] = iV ) T 17 = 2 0%0,0, F 112

-1 (s—1)
+ 2 fl+1.f2)T — @[( q J+l,'2)

= ((Lf 0 (Gg' ), (U ))T — A q.

We recall here that parameter k in the above equations is
the function of the azimuthal wavenumber n, according to the
rule (22).

A few words about the method of solution, confining our-
selves to the case @ # 0. Excluding with the help of (23¢)-

(s)
(23e), P{™, I + 0, from (23a), (23b) one can obtain the ma-
trix eguation

Ax = b,
k= P P P B0 0 P B ot 0
Y= ((”Hl (é)..'il-l’- ’(jgjjél],f,Hi J+l . f"” PJH)T forn < 0,
Q=0Qn=x), O=0—-1k+ 1), (24
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that is equivalent at o # 0 to (23). Here b is a known vector
and A = A(w, n, Re, 0, At) is real and nonsingular in a broad
range of indicated parameters. Matrices A~' can be computed
beforehand and then used at each time step. The required com-
puter storage is =M X N X (207 if we take into account that

Al—a, 1) = Ala, —n) = Ala, 1) (o, n > 0).

These memory requirements exceed those of algorithm A.
However, in contrast to method A algorithm (21)—(23) provides
at every iteration 5 the simultaneous fulfilment of the incom-
pressibility and boundary conditions. Incompressibility and
boundary conditions can also be satisfied if a certain explicit/
implicit algorithm without splitting is utilized. For instance, if
instead of (20) we use Adams—Bashforth time advancement
for the convective terms:

Q' =q’ + At (%N(ql) _ %N(qJ—i)) + Ar w‘&qﬁuz
— A VPRI

v g =0, qJ-le:R =,

then the discretized Navier—Stokes equations also have the
form (23) (and finally (24)) with modified right-hand sides—
vectors £, ‘G, and U. Storage requirements for collocation
matrices therefore remain unchanged.

To improve these rather severe restrictions we suggest the
following modification of the iteration technique (21):

(s) (s—1)

~(5— ~ {3}
a4 = q’ + ArNCg ) + Ay VA( q”fwz — Ar VP

7. ta)JH =0, H)Jﬂl =0 @3)

Using then the same spatial discretization we finally obtain,
instead of (23a)—(23d) (the case n # 0 as before),

(s) ) e

(F0 + Ar (DY — nRWOPIY, = P, [=1,2,..,00, (26a)
b . (5} -

(&7 + At (D® + nRPHY, =G, 1=1,2,..,0F, (26b)

4 TNy
(H + At iaP )f - GlL;,

1=1,2,..0- 1,
(26¢)
53 ¢
(DY + (1 + DRO) P71 4 (DB — (n — RO
+ 2.['(1(:1)1+1)l = 0, =0, 1, ..., Q — 1. (26d)

The set of Eqs. (26a)—(26d), (23¢), (23f) can be solved in a
{3}
more efficient way than with Egs. (23). We eliminate f7/*',

is) ) .
2’*! and u’*! by taking
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(D% + (n + DHR®)(26a) + (D® — (n — DRYY26b) + 2ic(26¢)

and setting it equal to zero (due to (26d)}. The resulting equation

)
for P/t takes the form

A—a*Ex=b x= (}3)13], g’{”, }53!5'_1)1", 27
where A = A(n, Re, 0, At) is a real nonsingular 0 X @ matrix
that is independent of the streamwise wavenumber «; E is the
identity matrix; » is a known vector. We note that Egs. (27)
are obtained from the set (26a)—(26d), (23e), (23f) by means
of the equivalent matrix operations. To solve {27) we can use
the so-called collocation—diagonalization method (see, e.g.,
(141) with memory requirements of about 2 X N X Q? words.

It is ruch better than in the previous cases considered. Vectors

{s) 03 g
1, g’ 1, and 71 can be obtained then from Eqgs. (26a)-(26c).

Direct simulation of the turbulent pipe flow shows that the
iteration scheme (25)—(27) is a good choice.

In Section 7 we suggest a new method of spatial discretization
admitting an efficient solution of the discretized Navier—-Stokes
equations for the more complicated case: when the iteration
algorithm (21) is used. But first we turn to an algorithm that
possesses certain conservation propetties.

6. JACOBI COLLOCATION METHOD WITH DISCRETE
ANALOGUES TO ENERGY CONSERVATION RELATIONS
(ALGORITHM C)

It is well known (see, e.g., [26, 27, 29, 30]), that the stability
characteristics of Navier—Stokes algerithms are closely con-
nected with their ability to reproduce the so-called neutrality
of the Navier—Stokes equations nonlinear and pressure terms.
Under neutrality the zero contribution

VP, =0, v (¥Xw=0 (28a)
of the total pressure and nonlinearity ¥ X w to the equation
for kinetic energy,

dE . _ {9\ 2
dt - <uv dr> U((V X V) )npzs

ez

{28b)

where
1
— 2 —_ 2
E= {2, = p— Lq drv:i2

is understood. The algorithm stated below possesses discrete
analogues 1o the relations (28) and generalizes algorithm [30]
to cylindrical geometry.

Seolutions of Eqs. {19) are approximated by the polynomials
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(q(“ ’)) _3 (‘W)) h(x)
P(r,))  B\p)/ (x —x) dhildx(x)’
(29}
hx) = (& = x)(x = 2)PRAD, x =1 2r/R,

where q; = q(r;, 1), P, = Plr, th, xo = —1,xp= l,and x; €
(-1, 1), I =1,2, .., 0 — 1, are the zeros of the Jacobi
polynomial PEY(x).

The time integration of Eqs. (19) is carried out by means of
the implicit second-order scheme (20). For spatial discretization
the collocation technique with interpolation points r; = (1 —
xR2, 1 =101, .., 0O, 1s used. As a result we cbtain

(G = gPIAL = D)3 (117 + g2,

—_ iav()(rl)q?),fﬂﬂ + FS:“)JH!E

+ v(Aq?)2 — (VPO (30a)
1=1,2,..,09i=1213
&-qi'=0, [=0,1,..0 1 (30b)
Q' =0, uf'=PF =0@n+0),
fE'=0m+ 1), gif'=0@m#*1),
vl =wht=0(n=0). (30¢c)

Here g%, VP®, Aq®, F@ i = 1,2, 3, are components of the
corresponding  vectors defined in (19b), (19c); F¥-*12 =
Fig*2), |m| = M, [n| = N, Q4 =0,00 =0 -1 (n #
-1, PP=0,00=0-1n+1300=000=0-1
(n # 0); 8, 1s the Kronecker symbol.

Consider the Gauss quadrature formula

1 0
FJ:’f(r)dr=2le(r1), rf:R(l—x'.)/2; (31)
=0

it is precise for polynomials f of degree not higher than 2Q — 1.
It can be easily shown that

(V) = Blg, q), (v-VP),. = B(q, VP),
(V- (v X ) = B, F) = 0

where

Bt sy = > > (ELUSE + E LG + 185D,

|m{=M =
t(r, ) = (60,52, 5 s(r,0) = (0, 5%, 59),  (32)
=1 &=12n+F0.

From here and from relations (31) we obtain

V. G. PRIYMAK

0 N
2 g Cr%(qfﬂ,‘z! VPt = (v, VPjH),W =90, (33a)

e]

E C}%(qfﬂ.'z’ @}H]!Z) =1,

(33b)

the discrete analogues of Eq. (28a). Both of the equalities in
(33a) are approximate. The first one is because of the 20 power
of the polynomial

%(qﬁuz, ﬁPJH);

the second one, is due to the fact that (30b) does not provide
the identity fulfillment of the incompressibility condition.

Having multiplied (30a) on 2c(q7*'"")*, we take the summa-
tion over m and # in accordance with rule (32) and, afterwards,
the summation over [ = 0, 1, ..., Q. Because of (33) we obtain
that the terms (VP?)'* and F%/7'% do not contribute to the
positive definite quadratic form

- Z ’
EIH = 2 C|%(Q{+I, (lfH)
=0

that approximately equals the Kinetic energy £

We suggest solving Eqs. (30) by means of the successive
approximations methods (21) or (25), where the resulting equa-
tions are similar to (23) or to (26), respectively.

The experience of our Navier—Stokes turbulence simula-
tions shows that the main advantage of algorithms possessing
discrete analogues to neutrality conditions (28) is their ability
to carry out stable substantial time step calculations of the
latest stages of the laminar-turbulent transition. Algorithm C
is among these methods. On a certain stage of transition an
abrupt increase of amplitudes of the disturbances initially
superimposed on the laminar Poiseuille flow takes place. To
calculate an explosive growth of amplitudes (Orszag and
Kells [I] caltl it the “‘breakdown to turbulence’) directiy
preceding the establishment of a statistically stationary (fully
developed) turbulent flow regime is the most difficult compu-
tational problem, especially for algorithms without conserva-
tion properties. See, e.g., [31], where the author had tc lower
repeatedly the value of time step to pass this stage of
transition. In the majority of works devoted to direct Navier—
Stokes simulation of turbulence the difficulty under consider-
ation is not mentioned at all. Apparently, flow fields that
are already “‘close’” to fully developed turbulent regimes
are taken as the starting point (initial condition) for these
calculations. In many other works only the early stages of
transition are investigated.

Finally, we note that at the same number of collocation nodes
in algorithms A, B, and C, the latter has the lowest accuracy:
the viscous sublayer (0 = y* < 7, yv* = (R — rju /v, u, is the
shear wall velocity) of the turbulent pipe flow computed at
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Re = 4000 and Q + | = 33 in [20, 21] contains seven nodes
for algorithms A and B and only five nodes for algorithm C.

7. PSEUDOSPECTRAIL ALGORITHM ADMITTING AN
EFFICIENT SOLUTION OF THE DISCRETE NAVIER-
STOKES EQUATIONS (ALGORITHM D)

Consider an algorithm admitting an efficient solution of the
discrete Navier—Stokes equations. For this purpose we perform
the change of dependent variables in Egs. (19} introducing §
and P according to relations (8).

Approximating the sought-for solution by an interpolation
polynomial

(0)-4

where h{®(r) is prescribed by (13b), and applying the pseudo-
spectral method and time integration scheme of (21), we obtain
(for the case n > Q)

q;()
(P ( )) R{(r), ;= Rcos(mil2Q),  (34)
!

(s} (s) .
(If " - BOPIY, =&, I=1,2..,

0, (35a)
(G?’*' —(D+ 2nE)j5)’+‘), =%, I=1,2,.., 0, (35h)
(U%?“'). - ia;:’)’,” =, 1=1,2,...0, (350
P =8 = =, (35d)

(O.5D + (n + HEF™ + 05803,
+iah =0, 1=0,1,.. 0. (35¢)

Here

f=(fo.f1, ... fo)¥ with the same notation used for g, &, P,

) 2n+3

G _5(cﬁ°)+ 2n — |
2n+ 1

1
B - o) — - E,

<

where E is the identity (@ + 1) X (@ + 1) matrix, C“’) and
B are defined by (14),

L] ls_)' =

=6

0: 1’ reey Qa

and (SE, ‘@, GU:), are values known at the iteration s.
A new procedure for solving Egs. (35) can be suggested that
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is more efficient than previously used for Egs. (23) and (30).
The new solver is based on the matrix identities

(D +2n+ DEX = 0D + 2(n + 1E),
B®G = B,
(D + 2n + DE)BY = BYD + 2nE) =

(36)
CY+ (2n + 1)BY,

that follows from our lemma.

1
LEMMA. Let T and § be differential operators: r(d/dr), >

(d/dr), or d*/dP defined on the interpolation polynomials (34).
Then for the matrices T, S, H, with the elements

= (Th{)

r=n» Slj = (Sh}()))lr:r;! H!j = (TSh}m)L:,.,,

Li=01,..0
the following matrix identity is correct:
H=Ts.

Using (36), we replace (35e) by the equivalent set of Eqgs.
37

(s} N
(CO+ 2n+ DBY — ?EYPHYy, =, [=1,2,.,0,

55
(05D + (n + I)E)f’” + 05BN, + ieed! = 0,

~

P, = .50 + (n + DE}E, — (0.5D + (n + DE)gh®

JUREIVS

B{‘”‘Q Bfg’ for _ iofil,,

=

(s) (s}
T[l) — (Lf’UH B(O)P”])g,

{5}

(s
T =GR — (D + mEP Y, (37

Equations (35a)—(35d), (37} are similar to Eqs. (3.5) in [8]
and can be solved by means of an efficient method based on
the Sherman—Morrison—Woodbury formula,

If we change a2 i Egs. (37) to ‘3 02 values already
known at iteration $, we can solve Eqgs. (35a)-(35d), (37) by
means of the usual influence matrix technique. In the course
of the solution one should use the possibility of diagonalization
of the matrix operators A + @(n)B — «’F by means of transfer-
ring them to the matrix A + @(n)B eigenvector space.
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TABLE 1

Convergence of the Least Stable Eigenvalues at Rey = 9600, o = 0 = 1

Ay

Salwen, Cotton, & Grosch |33]

—.02317 —.95048 i
Leonard & Wray [22]
N+2=2 —-02312 —.95050 i
27 —-2317074 —.95048142 i
32 —.023170795769 —.950481396659 i
37 —023170795764 —.950481396668 i
Algorithm B
o+1=22 —-02318 —.95040 |
27 —-02317072 — 9504811 i
32 —.023170797 —.950481399 i
37 —.023170795759 — 950481396659 i
42 —.02.317079576503 — 95048139666992 i
47 —_(2317079576500417 —.950481396669903170 i
52 —_02317079576500421524 —.95048139666990317947 i
57 —.0231707957650042152055 —.9504813966699031794844 i
62 —.0231707957650042152055 —.9504813966699031794843 |
Algorithm C
Q+1=22 - 02308 — 95043 |
27 —.02316 — 9504808 i
32 —.0231705 —.9504817 i
37 —.023170799 —.95048141 i
42 —.0231707961 —.950481396696 i
47 —.0231707957633 — 950481396663 i
52 —.0231707957649 —.95048139666988 1
57 —.0231707957650045 —.9504813966699037 i
62 —.0231707957650042 —.950481396669903178 i
Algorithm D
g+1=22 —.02318 —.950497 i
27 —.0231710 —9504815 i
32 —.023170795 —.9504813961 i
37 —.023170795770 —.950481396671 1
42 —.02317079576499 —.950481396669905 i
47 —.02317079576500423 —.950481396669903171 i
52 —.02317079576500421519% —.95048139666990317950 i
57 —.0231707957650042152055 —.9504813966699031794843 i
62 —.0231707957650042152055 —.9504813966699031794843 i

We emphasize here that Eqgs. (23) and (30) cannot be written
in the form similar to (35a)—(35d), (37).

8. ACCURACY AND STABILITY CHARACTERISTICS A
PRIORI ESTIMATES

Navier—Stokes simulation of turbulence makes high demands
of the algorithm’s accuracy and stability. Due to nonlinearity
of the discrete Navier—Stokes equations complete a priori inves-
tigation of their characteristics is a very complicated problem.
Some preliminary estimates can be obtained by means of a
spectral technique [32] based on the requirement of closeness of
spectral characteristics of the linear problem of hydrodynamic
stability and of the discrete linearized Navier—Stokes equations.

In other words the numerical method must properly reproduce
time evolution of small disturbances of Navier—Stokes laminar
stationary solutions V¢ P,

Time evolution of these disturbances is determined by the
solutions (the case a® + n’ # 0)

v,y s vk(r))
(P(F, t)) = exp(iaz + ing) ; ay (Pk(r) exp(Ad),

a=27lZ,n=0,%=I1,*x2,.., (38)
of Navier—Stokes equations lincarized on V° P’ Here A, =
A, n, Rep), red, = redyy, k= 1, 2, ..., eigenvalues, and v,,
Py, eigenfunctions, of the problem
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TABLE 11

Nine First Eigenvalues at Re, = 9600, & = n = 1

k Ay

1 —.023170795765004215 ~.950481396669903179 i
2 —.047586081470067203 —.276842738665522835 i
3 —.049457844 142035134 —.976681656624860195 i
4 —.049939191128628251 —.918858226047491525 i
5 —.077299966311528997 —.888174706374086770 i
6 —.080880040967004304 —.945767712360271294 i
7 —.082053066334950830 —.148388982676800416 i
8 —.104964149781276119 —.B5793770568 790834 1
9 -.111346833528618748 —.922252896844621581 i

Note, True digits that can be obtained with Q@ + I = 32 collocation nodes
are underlined.

Av = —VP+vXﬂ“+V“Xm+RLV2v, V-v=0,v|
€g

=0, (39)
where Rey = ul,Riv, ul; = V°|,.,. Approximate solutions of
Eqgs. (39) can be obtained by means of spatial discretizations
used in algorithms B, C, or D. Instead of {Ala, 1, Reg)}-, we
receive then the finite number of approximate eigenvalues
{Aa. n, Reg, O)}EL.

In Table I for &« = n = 1, Rey = 9600, we compare the
values of A, with the corresponding results from Leonard and

TABLE III
Convergence of Eigenvalues at Re, = 9600 and
a=n=20

o+1 k X
32 1 —.357184 —13.1939 i
2 —.359880 —-12.2153 i
3 —.361510 —14.1407 i
4 —.369130 —11.2147 i
62 1 —.713982 —1.10611 i
2 —.813027 —1.84159 i
3 —.857136 —15.8335 i
4 —.858351 —15.4049 i
82 1 ~. 713982 —1.10611 i
2 —.813027 —1.84159 i
3 —1.18296 —1.92255 i
4 —1.31254 —16.7317 i
102 1 —.713982 —1.10611 i
2 —.813027 —1.84159 i
3 —1.18296 —1.92255 i
4 —1.33409 —18.5810 i
122 1 —.713982 —1.10611 i
2 —.813027 —1.84159 i
3 —1.18296 —1.92255 i
4 —1.33409 —18.5810 i
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Wray {22] and Salwen er al. [33]. Here N + 2 and @ + 1
equal the total number of degrees of freedom in [22] and in
our work, respectively. One can see that the convergence rates
of algorithms B and D are comparable [22], while that of
algorithm C is relatively lower. Nevertheless, in all cases almost
the “‘exponential’” (in ) convergence is demonstrated, which
allows us to state that algorithms B, C, and D (as well as [22])
are all methods *‘without satiation.”” The latter is typical for
spectral methods, the corresponding concept was introduced
by Babenko in [34].

Tables II and IIT permit us to estimate the number of
collocation points necessary for adequate polynomtal approxi-
mation of the spectral problem (39) when Re, = 9600,
o = n = 1, and « = n = 20. As it is often stated
(see, e.g., Fig. 1 in [22]) spectral (pseudospectral) methods
approximate a considerable number (K > 1) of eigenvalues
{AJE, for a relatively small number of expansion functions
(collocation nodes). This is also true for spatial approximations
B, C, and D. In Table I (the case of algorithm B) we show
nine first eigenvalues {A}{-, when a = n = 1. Digits that
coincided for computations with a number of different colloca-
tion points @ + 1 = 102, 129 were assumed to be truly
significant. We then underline the digits which coincide also
for the calculation with O + 1 = 32 nodes, Thus, a large
number of eigenvalues can be accurately calculated with only
32 collocation points in the r-direction.

The situation changes for large values of wavenumbers o =
s = 20. Table II shows us that no one true eigenvalue can be
obtained in this case with @ + 1 = 32 nodes. And what is
more, only two eigenvalues can be correctly computed with
much finer resolution when @ + 1 = 62. Besides, this is quite
an ordinary situation for spectral problems of (39) type. We
demonstrate it here once more in order to stress the necessity
of investigating the spectral characteristics of Eqs. (39) for the
full range of wavenumbers that we intend to take into account
during the nonlinear Navier—Stokes calculations. However, the
common practice at present is to test the time evolution of the
first (least stable) eigenvalue A, only. The above-mentioned
{and some other) inaccuracies in the description of Egs. (39)
spectrum can be, in addition, amplified by the time advancement
scheme. To investigate the latter influence on the stability and
accuracy characteristics of algorithms, without direct time-con-
suming Navier—Stokes integration in time, we suggest the fol-
lowing technique.

Consider for definiteness Egs. (15)-(17) of algorithm A and
assume that nonlinearity v X w equals zero. The resulting
equations appear to be the discrete analogue of the linearized
Navier—Stokes equations and possess solutions that, similarly to
{(38), are defined by eigenvectors and eigenvalues of conversion
matrix from time step ¢, to time step f,4, . Using these eigenval-
ues the spectra {Afc, n, Req, Q, Af, 5)} of a discrete
problem can be computed and compared with the
spectra Xk(oz,n, Reg, )} of the corresponding differential
problem.
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TABLE IV

The Least Stable Eigenvalues of the Discrete and Differential Problems

Nla, 1, Req, @, Ar, ) Xce, n, Rey, )
a, B Ar (Rey, = 4000, @ = 32,5 = 1} (Re, = 4000)
1,1 00625 —357 X 107" — § 923 —.358 % 107" — / 923 {0 = 32)
—-.358 X 107" — i 923 Q= 04
4, 4 2 -293 — i 493 —.189 — 372X 107 {Q = 32)
1 -224 —i.369 % 10" —.189 - i3 X107 {0 = 68
00625 —.189 —i.372 X 10"
1o, 10 1 -.529 — 453 % 10M -.529 — i 800 % 107 {Q = 3
05 —.371 — i .657 X 10* —.574 — {928 {0 = 64)
00625 —.284 —i.714 X 10" —.574 - {928 (0 =128
0001 — 275 — 715 X 10
00001 —-275 —i.715 X 10
20, 20 .05 +.172 X 107 + § 240 X 10+ — 881 — .35 X 1072 {@ = 32)
025 — 536 —i.104 X 10* —104 X 0% — i 148 X 10" {Q = 64)
00625 —.410 —i.115 x 10*? —. 104 X 10" — i 148 X 1071 {2 = 128)
.0001 -.369 —i.115 x 107
00001 — 369 —i.115 X 107
42, 42 0125 +.669 X 107 + { 514 X 10*2 —.198 X 10" — i 206 X 1072 {Q = 32)
00625 —.125 X 10*" — { 182 % 10*2 =227 X 107" — i 242 X 107 (0 = &4
0001 — 103 X 10" — {202 X 10% ~.227 % 107 — {242 % 107 {Q = 128)
00001 —.102 X 107 — § 202 % 10*
Without loss of generality we shall explain the technology , & 1d\{3., 1,
of spectral analysis in the case & = mayy; #+ 0, n # 0. It follows +Arw| V- ar rdrf\2tmT Evmn

from Egs. (11b), (15), and (16} that

(s)
N = Av’" i

where

v = (umnls

’ Wan‘)Tv

Q:=Q—-1(n[# 1)

k) umﬂ,Q—la Uﬂml: wee

Q:=Q (=1,

s Urer,s Wonts -

and A is a complex square matrix. From here and Eqs. (17)
we obtain

(5)

Frt = _A‘ B-AV U (5=, (40)

t

where B is areal nonsingular matrix approximating the differen-
tial operator at the left-hand side of Eq. (17a) with boundary
conditions (17b).

In the case s = 0, instead of Eq. (12), we have

(0)
VI = Vi, o+ A1 QO G, — RolaDe. — ice At VO Bvh, — V1))

From here with regard to (40) we receive

o . .
Vi =TV - TV, (41a)
where complex (@ — 1 + 20 X (@ — | + 2Q.) matrices
T,. T, are functions of e, 2, Rey, @ and At. For s = 1 we have,
instead of (41a),

(5) {s—=1)
V=1,V N+ TV, (41b)
where 7; is also square complex matrix of the (O — | +
20.th order.

Using the recurrence relations (41) one can finally obtain

(s}

'\71-{-1

TV + (=T V™ (= 1),
where
T, = (DT + (T5' + T2+ - + To + EDT).

Since the matrices T, and (—T5) do not depend on the index J,
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(s}

P (s) ~
Nl = o,

(s) = . .
where p and ¢ are among the eigenvalues and eigenvectors of
the spectral problem

’ T. (-Ty N
(p')x=( ) i )x, x = (pf, V',
E O

that can be solved by means of the QR algorithm.
Eigenvalues A, are calculated then according to the follow-
ing formula:

- T
A, m, Res, ©, At, 5) =Ktln(p]k, k=1,..200 ~ 1+ 20.).

Comparison of the sets {A;} and (XY, red, = red, k = 1,
2, ..., permils us to obtain important information about the
stability and accuracy characteristics of the numerical scheme
at different values a, n, Rey, Q. Ay, 5 of the problem parameters.
Periodic with respect to z with period Z = 72R nonstationary
Navier—Stokes solutions describing the turbulent flow regimes
in a circular pipe at Re = 4000 were obtained in [20, 21]. The
calculations were performed with (Q + 1) X 2N + 1) X
(2M + 1) =33 X9 x 9,33 X 21 X 21,and 33 X 41 X 4]
basis functions in r, ¢, 7. Nowadays more precise computations
with 33 X 85 ¥ 85 functions are also carried out. In all the
cases algorithm A was used with Q = 32, s = 1, and, depending
on the number of basis functions, with time steps Ar = 0.1,
0.05, 0.025, and 0.00625, respectively. Here the radius R is
chosen as a unit of length and the centre-line velocity ug; at
Re, = Re = 4000 as a unit of velocity. For 33 X 9 X 9,
33 X 21 X 21,33 X 41 X 4], and 33 X 85 X 85 computer
runs instability was observed at Az = 0.2, Ar = 0.1, Ar = 0.05,
and Ar = 0.0125, respectively. _
In Table IV we compare the least stable eigenvalues A,
and X, of the differential and discrete spectral problems. For
M, N = 20 in the lincar approach algorithm A loses stability
approximately at the same values of Az as it does in the nonlinear
case. In fact {cf. Table IV), the stationary solution (5) is stable
in the linear approach at A = 0.00625 and unstable at Ar =
0.0125 with respect to the Fourier harmonic with e = 42, n
=42 (Z = 2w and M = N = 42 in representation (7)); similarly,
it 1s stable at Ar = 0.025 and unstable at Ar = 0,05 with respect
10 the harmonic with & = 20, n = 20 (M = N = 20). In the
case M = N = 4, although the stability survives, while Atz
increases from 0.1 to 0.2, the spectra undergo undesirable quali-
tative changes.
Data of Table IV allow us also to estimate the rate of con-
vergene of eigenvalues X ; and the number @ + 1 of collocation
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points necessary for the adequate description of Fourier har-
monics with different wavenumbers «, n when Re, = 4000,
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